Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

An Experimental Investigation on Spray Characteristics of Waste Cooking Oil, Jatropha, and Karanja Biodiesels in a Constant Volume Combustion Chamber

2016-10-17
2016-01-2263
In this study, macroscopic spray characteristics of Waste cooking oil (WCO), Jatropha oil, Karanja oil based biodiesels and baseline diesel were compared under simulated engine operating condition in a constant volume spray chamber (CVSC). The high pressure and high temperature ambient conditions of a typical diesel engine were simulated in the CVSC by performing pre-ignition before the fuel injection. The spray imaging was conducted under absence of oxygen in order to prevent the fuels from igniting. The ambient pressure and temperature for non-evaporating condition were 3 MPa and 300 K. Meanwhile, the spray tests were performed under the ambient pressure and temperature of 4.17 MPa and 804 K under evaporating condition. The fuels were injected by a common-rail injection system with injection pressure of 80 MPa. High speed Mie-scattering technique was employed to visualize the evaporating sprays.
Technical Paper

Effects of Spray Droplet Size and Velocity Distributions on Emissions from a Single Cylinder Biofuel Engine

2016-04-05
2016-01-0994
Biodiesel made from Jatropha oil by transesterification process has viscosity and other important physical properties comparable to mineral diesel hence it can be used as an alternate fuel in conventional diesel engines. It is important to investigate the spray characteristics of biodiesel because emissions from the engines are dependent on fuel atomization process and resulting fuel-air mixing. This study focuses on the Jatropha biodiesel spray investigations using Phase Doppler Interferometry (PDI) for measurement of various microscopic spray parameters such as Sauter mean diameter (SMD) and spray droplet size and velocity distributions. The spray and engine experiments were carried out for Jatropha biodiesel (JB100) and their 20% blends (JB20) with mineral diesel as baseline. Fuel injection pressure during the spray experiments was maintained at 200 bars for all tests, quite similar to small horse power agricultural engines, and the fuel injection quantity was varied.
Technical Paper

Macroscopic and Microscopic Spray Characteristics of Diesel and Karanja Biodiesel Blends

2016-04-05
2016-01-0869
Fuel injection pressure (FIP) is one of the most important factors affecting diesel engine performance and particulate emissions. Higher FIP improves the fuel atomization, which results in lower soot formation due to superior fuel-air mixing. The objective of this spray study was to investigate macroscopic and microscopic spray parameters in FIP range of 500-1500 bar, using a solenoid injector for biodiesel blends (KB20 and KB40) and baseline mineral diesel. For these test fuels, effect of ambient pressure on macroscopic spray characteristics such as spray penetration, spray area and cone angle were investigated in a constant volume spray chamber (CVSC). Microscopic spray characteristics such as velocity distribution of droplets and spray droplet size distribution were measured in the CVSC at atmospheric pressure using Phase Doppler Interferometry (PDI).
Technical Paper

Tomographic PIV Evaluation of In-Cylinder Flow Evolution and Effect of Engine Speed

2016-04-05
2016-01-0638
In this study, 3D air-flow-field evolution in a single cylinder optical research engine was determined using tomographic particle imaging velocimetry (TPIV) at different engine speeds. Two directional projections of captured flow-field were pre-processed to reconstruct the 3D flow-field by using the MART (multiplicative algebraic reconstruction technique) algorithm. Ensemble average flow pattern was used to investigate the air-flow behavior inside the combustion chamber during the intake and compression strokes of an engine cycle. In-cylinder air-flow characteristics were significantly affected by the engine speed. Experimental results showed that high velocities generated during the first half of the intake stroke dissipated in later stages of the intake stroke. In-cylinder flow visualization indicated that large part of flow energy dissipated during the intake stroke and energy dissipation was the maximum near the end of the intake stroke.
Technical Paper

Evaluation of Lanthanum Based Diesel Oxidation Catalyst for Emission Reduction with and without Ceria Support

2016-02-01
2016-28-0023
Diesel particulates are mainly composed of elemental carbon (EC) and organic carbon (OC) with traces of metals, sulfates and ash content. Organic fraction of the particulate are considered responsible for its carcinogenic effects. Diesel oxidation catalyst (DOC) is an important after-treatment device for reduction of organic fraction of particulates. In this study, two non-noble metal based DOCs (with different configurations) were prepared and evaluated for their performance. Lanthanum based perovskite (LaMnO3) catalyst was used for the preparation of DOCs. One of the DOC was coated with support material ceria (5%, w/w), while the other was coated without any support material. Prepared DOCs were retrofitted in a four cylinder water cooled diesel engine. Various emission parameters such as particulate mass, particle number-size distribution, regulated and unregulated emissions, EC/OC etc., were measured and compared with the raw exhaust gas emissions from the prepared DOCs.
Technical Paper

Effect of Intake Charge Temperature and EGR on Biodiesel Fuelled HCCI Engine

2016-02-01
2016-28-0257
IC engines are facing two major challenges in the 21st century namely threat of fossil fuel depletion and environmental concerns. HCCI engine is an attractive solution to meet stringent emission challenges due to its capability to simultaneously reduce NOx and PM. HCCI technology can be employed with different alternative fuels without significant modifications in the existing engines. In this study, HCCI combustion was investigated using B20 (20% v/v biodiesel with diesel). Investigations were carried out on a two cylinder engine, in which one cylinder was modified to operate in HCCI mode however the other cylinder operated in conventional CI combustion mode. A dedicated fuel vaporizer was used for homogeneous fuel-air mixture preparation. The experiments were performed at three different intake charge temperatures (160°C, 180°C and 200°C) and three different EGR ratios (0%, 10% and 20% EGR) at different engine loads.
Technical Paper

In-Cylinder Air-Flow Characteristics Using Tomographic PIV at Different Engine Speeds, Intake Air Temperatures and Intake Valve Deactivation in a Single Cylinder Optical Research Engine

2016-02-01
2016-28-0001
Fuel-air mixing is the main parameter, which affects formation of NOx and PM during CI combustion. Hence better understanding of air-flow characteristics inside the combustion chamber of a diesel engine became very important. In this study, in-cylinder air-flow characteristics of four-valve diesel engine were investigated using time-resolved high-speed tomographic Particle Imaging Velocimetry (PIV). For visualization of air-flow pattern, fine graphite particles were used for flow seeding. To investigate the effect of different operating parameters, experiments were performed at different engine speeds (1200 rpm and 1500 rpm), intake air temperatures (room temperature and 50°C) and intake port configurations (swirl port, tangential port and combined port). Intake air temperature was controlled by a closed loop temperature controller and intake ports were deactivated by using a customized aluminum gasket.
Technical Paper

Effects of Hydrogen Ratio and EGR on Combustion and Emissions in a Hydrogen/Diesel Dual-Fuel PCCI Engine

2015-09-01
2015-01-1815
The effects of hydrogen ratio and exhaust gas recirculation (EGR) on combustion and emissions in a hydrogen/diesel dual-fuel premixed charge compression ignition (PCCI) engine were investigated. The control of combustion phasing could be improved using hydrogen enrichment and EGR due to the retarded combustion phasing with a higher hydrogen ratio. The indicated mean effective pressure (IMEP) was increased with a higher hydrogen ratio because the hydrogen enrichment intensified the high temperature reactions and thus decreased the combustion duration. Hydrocarbon (HC) and carbon monoxide (CO) emissions were reduced significantly in a hydrogen/diesel dual-fuel PCCI mode with a similar NOx emissions level as that of the diesel PCCI mode.
Technical Paper

Effects of High-Response TiAl Turbine Wheel on Engine Performance under Transient Conditions

2015-09-01
2015-01-1881
Transient tests in a 2.0 liter in-line 4 cylinder downsizing gasoline direct injection engine were conducted under various transient conditions in order to investigate effects of lower rotational inertia of titanium aluminide alloy (TiAl) turbine wheel on engine and turbocharger performances. As a representative result, fast boost pressure build up was achieved in case of TiAl turbocharger compared to Inconel turbocharger. This result was mainly due to lower rotational inertia of TiAl turbine wheel. Engine torque build up response was also improved with TiAl turbocharger even though engine torque response gap between both turbochargers was slightly reduced due to retarded combustion phase. In addition, with advanced ignition timing, fuel consumption became less than that of Inconel turbocharger with similar engine torque response.
Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
Journal Article

Comprehensive Assessment of Soot Particles from Waste Cooking Oil Biodiesel and Diesel in a Compression Ignition Engine

2015-04-14
2015-01-0809
The effect of biodiesel produced from waste cooking oil (WCO) on the soot particles in a compression ignition engine was investigated and compared with conventional diesel fuel. The indicated mean effective pressure of approximately 0.65 MPa was tested under an engine speed of 1200 revolutions per minute. The fuels were injected at an injection timing of −5 crank angle degree after top dead center with injection pressures of 80 MPa. Detailed characteristics of particulate matters were analyzed in terms of transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and elemental analysis. Soot aggregates were collected on TEM grid by thermophoretic sampling device installed in the exhaust pipe of the engine. High-resolution TEM images revealed that the WCO biodiesel soot was composed of smaller primary particle than diesel soot. The mean primary particle diameter was measured as 19.9 nm for WCO biodiesel and 23.7 nm for diesel, respectively.
Technical Paper

Effect of Injection Strategy on Low Temperature - Conventional Diesel Combustion Mode Transition

2015-04-14
2015-01-0836
Low Temperature Combustion (LTC) is known to be feasible only in lower load ranges so in real world application of LTC, engine operation mode should frequently change back and forth between LTC mode in lower loads and conventional mode in higher loads. In this research, effect of injection strategy on smoothness and emissions during mode transition in a single cylinder heavy duty diesel engine is studied. The Exhaust Gas Recirculation (EGR) line was controlled by a servo-valve capable of opening or closing the EGR loop within only one engine cycle. Ten cycles after the EGR valve closure were taken as the transition period during which injection timing and quantity were shifted in various ways (i.e. injection strategies) and the effect on Indicated Mean Effective Pressure (IMEP) stability and emissions was studied.
Technical Paper

Unregulated and Regulated Emissions from Biodiesel Fuelled CRDI SUV Engine

2015-04-14
2015-01-0889
Use of biodiesel from non-edible vegetable oil as an alternative fuel to mineral diesel is attractive economically and environmentally. Diesel engines emit several harmful gaseous emissions and some of them are regulated worldwide, while countless others are not regulated. These unregulated species are associated with severe health hazards. Karanja biodiesel is a popular alternate fuel in South Asia and various governments are considering its large-scale implementation. Therefore it is important to study the possible adverse impact of this new alternate fuel. In this study, unregulated and regulated emissions were measured at varying engine speeds (1500, 2500 and 3500 rpm) for various engine loads (0%, 20%, 40%, 60%, 80% and 100% rated load) using 20% Karanja biodiesel blend (KB20) and diesel in a 4-cylinder 2.2L common rail direct injection (CRDI) sports utility vehicle (SUV) engine.
Technical Paper

Noise, Vibrations and Combustion Investigations of Preheated Jatropha Oil in a Single Cylinder Genset Engine

2015-04-14
2015-01-1668
High viscosity of vegetable oil causes ignition problems when used in compression ignition engines. There is a need to reduce the viscosity before using it as engine fuel. Preheating and pre-treating of vegetable oils using waste heat of exhaust gases is one of the techniques, which reduces the viscosity and makes it possible to use it as alternate fuel for some niche applications, without requiring major modifications in the engine hardware. Several applications such as decentralized power generation, agricultural engines, and water pumping engines, can use vegetable oils as an alternative fuel. In present investigation, performance, combustion, and emission characteristics of an engine using preheated 20% blend of Jatropha oil with mineral diesel (J20) has been evaluated at a constant speed (1500 rpm) in a single cylinder four stroke direct injection diesel engine.
Journal Article

Particulate Morphology and Toxicity of an Alcohol Fuelled HCCI Engine

2014-04-15
2014-01-9076
Homogeneous charge compression ignition (HCCI) engines are attracting attention as next-generation internal combustion engines mainly because of very low NOx and PM emission potential and excellent thermal efficiency. Particulate emissions from HCCI engines have been usually considered negligible however recent studies suggest that PM number emissions from HCCI engines cannot be neglected. This study is therefore conducted on a modified four cylinder diesel engine to investigate this aspect of HCCI technology. One cylinder of the engine is modified to operate in HCCI mode for the experiments and port fuel injection technique is used for preparing homogenous charge in this cylinder. Experiments are conducted at 1200 and 2400 rpm engine speeds using gasoline, ethanol, methanol and butanol fuels. A partial flow dilution tunnel was employed to measure the mass of the particulates emitted on a pre-conditioned filter paper.
Technical Paper

Comparative Study on Effect of Intake Pressure on Diesel and Biodiesel Low Temperature Combustion Characteristics in a Compression Ignition Engine

2013-10-14
2013-01-2533
Owing to the presence of oxygen atoms in biodiesel, the use of this fuel in compression ignition (CI) engines has the advantage of reducing engine-out harmful emissions. In this context, biodiesel fuel can also be used to extend the low temperature combustion (LTC) regime because it inherently suppresses soot formation within the combustion chamber. Therefore, in this study, LTC characteristics of biodiesel were investigated in a single cylinder CI engine; the engine performance and emission characteristics with biodiesel and conventional petro-diesel fuels were evaluated and compared. A modulated kinetics (MK)-like approach was employed to realize LTC operation. The engine test results showed that LTC operation was achieved by retardation of the fuel injection timing. The results also showed that using biodiesel reduced smoke, THC, and CO emissions but increased NOx emissions.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

2013-10-14
2013-01-2547
Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Technical Paper

Effect of Injection Timing Retard on ISI Strategy in Lean-burning LPG Direct Injection Engines

2013-10-14
2013-01-2636
Because of the concerns regarding global warming caused by greenhouse gases and the high cost of fossil fuels, research on improving the fuel economy and emissions in internal combustion engines has become important. Specifically for spark ignition engines, lean-burning direct injection is the most promising technology because the fuel economy and emissions can be improved using a stable combustion of a stratified mixture. This study aimed to develop a spray-guided, lean-burning liquefied petroleum gas (LPG) direct injection engine through optimizing the combustion parameter controls. In previous research, the brake thermal efficiency in an LPG direct injection engine was significantly increased and stable combustion was secured with an interinjection spark ignition (ISI) strategy under low-load operating conditions.
Technical Paper

Assessment of Soot Particles in an Exhaust Gas for Low Temperature Diesel Combustion with High EGR in a Heavy Duty Compression Ignition Engine

2013-10-14
2013-01-2572
The characteristics of soot particles in an exhaust gas for low temperature diesel combustion (LTC) compared with conventional combustion in a compression ignition engine were experimentally investigated by the elemental and thermogravimetric analysis (TGA). Morphology of soot particles was also studied by the transmission electron microscopy (TEM). From the result of the TGA, the water can be evaporated until about 150°C for both combustion regimes. The soot particles for LTC contained more volatile hydrocarbons, which can be easily evaporated from 200°C to 420°C compared with conventional diesel combustion. The soot oxidation for conventional combustion occurs up to 600°C, on the other hand the particles for LTC is oxidized below 520°C. Elemental analysis showed higher oxygen weight fraction resulted from the oxygenated hydrocarbon for the soot particles in LTC. TEM has shown primary particles to be in a diameter range of 20 to 50 nm for conventional diesel combustion.
Technical Paper

Effect of Injection Parameters on the Combustion and Emission Characteristics in a Compression Ignition Engine Fuelled with Waste Cooking Oil Biodiesel

2013-10-14
2013-01-2662
An experimental study was conducted to investigate the impact of injection parameters on the combustion and emission characteristics in a compression ignition engine fuelled with neat waste cooking oil (WCO) biodiesel. A single-cylinder diesel engine equipped with common-rail system was used in this research. The test was performed over two engine loads at an engine speed of 800 r/min. Injection timing was varied from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) at two different injection pressures (80 and 160 MPa). Based on in-cylinder pressure, heat release rate was calculated to analyze the combustion characteristics. Carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) and smoke were measured to examine the emission characteristics. The results showed that the indicated specific fuel consumption (ISFC) of WCO biodiesel was higher than that of diesel. The ISFC was increased as the injection timing was advanced and injection pressure was increased.
X